Trả lời câu hỏi 4, 5 bài 1 sgk toán 9 trang 99 sgk toán 9 tập 1

     

Giải bài xích tập trang 99, 100 bài 1 sự xác minh của mặt đường tròn, tính chất đối xứng của đường tròn SGK Toán 9 tập 1. Câu 1: Cho hình chữ nhật ABCD bao gồm AB=12centimet, BC=5cm...

Bạn đang xem: Trả lời câu hỏi 4, 5 bài 1 sgk toán 9 trang 99 sgk toán 9 tập 1


Bài 1 trang 99 sgk Toán 9 - tập 1

Cho hình chữ nhật ABCD gồm AB=12cm, BC=5cm. Chứng minch rằng tứ điểm A, B, C, D thuộc và một con đường tròn. Tính nửa đường kính của đường tròn đó.

*

Hướng dẫn giải:

Hotline O là giao điểm hai tuyến đường chéo của hình chữ nhật, ta bao gồm OA = OB = OC = OD = R.

Bốn điểm A, B, C, D, giải pháp đầy đủ điểm O cần tư điểm đó cùng thuộc một con đường tròn.

Xét tam giác ABC vuông trên B, có:

(AC^2=AB^2+BC^2=12^2+5^2=169Rightarrow AC=13.)

Bán kính của con đường tròn là (R=13over2=6,5.)

Nhận xét: Để minh chứng nhiều điểm cùng nằm trên một con đường tròn, ta chứng minh các điểm này thuộc cách mọi một điểm.

 

 

Bài 2 trang 100 sgk Tân oán 9 - tập 1

Bài 2. Hãy nối từng ô làm việc cột trái cùng với mỗi ô sinh sống cột phải kê được khẳng định đúng.

(1) Nếu tam giác có tía góc nhọn

(4) thì trung tâm của mặt đường tròn nước ngoài tiếp tam giác kia ở bên phía ngoài tam giác.

Xem thêm: Bài Tập Làm Văn Số 7 Lớp 8 Đề 1, Nghị Luận Về Tuổi Trẻ Và Tương Lai Đất Nước

(2) Nếu tam giác có góc vuông

(5) thì trung khu của mặt đường tròn ngoại tiếp tam giác kia nằm bên trong tam giác.

(3) Nếu tam giác tất cả góc tù

(6) thì trọng tâm của đường tròn nước ngoài tiếp tam giác chính là trung điểm của cạnh lớn nhất.

 

(7) thì trọng tâm của mặt đường tròn nước ngoài tiếp tam giác chính là trung điểm của cạnh nhỏ nhất

Hướng dẫn giải:

Nối (1) cùng với (5),

(2) với (6),

(3) với (4).

 

Bài 3 trang 100 sgk Tân oán 9 - tập 1

Bài 3. Chứng minch những định lý sau:

a) Tâm của mặt đường tròn nước ngoài tiếp tam giác vuông là trung điểm của cạnh huyền.

b) Nếu một tam giác tất cả một cạnh là đường kính của đường tròn nước ngoài tiếp thì tam giác sẽ là tam giác vuông.

Hướng dẫn giải:

*

a) Xét tam giác ABC vuông tại A.

Hotline O là trung điểm của cạnh huyền BC, ta có:

OA = OB = OC = R

Vậy O đó là tâm cuả đường tròn ngoại tiếp tam giác ABC

b) Xét tam giác ABC nội tiếp đường tròn (O) 2 lần bán kính BC.

Xem thêm: Ba So Tu Nhien Le Lien Tiep Co Tich Bang 315, Giải Toán Trên Mạng

*

Ta có OA = OB = OC = R

suy ra (OA=frac12BC), cho nên vì vậy tam giác ABC vuông trên A

Nhận xét: Định lý trong bài tập này thường được dùng để giải nhiều bài bác tập về nhận thấy tam giác vuông.


Chuyên mục: